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Abstract

Confidence intervals for median survival times are derived for censored

survival data. The intervals are obtained by using the quantiles of the

Kaplan-Meier product limit estimator and have the same Pitman efficiency as

the intervals found by inverting the sign test. Two-sample tests and

confidence intervals for the difference in median survival times are then

developed based on the comparison of the one-sample confidence intervals.

Several methods for choosing the confidence coefficients of the corresponding

one-sample confidence intervals are developed. The Pitman efficiencies of

these two-sample tests are the same as that of the median test proposed by

Brookmeyer and Crowley (1982b). The procedures can also be used for the

Behrens-Fisher problem.

p. Nonparametric two-sample inference procedures are useful in comparing the

responses of treatment and control groups. In medical follow up studies the

data are usually subjected to censoring. While many of the two-sample

procedures have been extended to accommodate censored data we show, in this

-''p paper, how to construct two-sample tests and confidence intervals based on

one-sample confidence intervals. This method was first discussed in

Hettmansperger (1984a) for uncensored data where a confidence interval for the

difference in population medians is constructed by subtracting the endpoints

of one (one-sample) interval from the opposite endpoints of the other. The

test then rejects the null hypothesis of equal medians if the one-sample

interval3 are disjoint. Hettmansperger used the sign-interval as the one-

sample interval which is ohtained by inverting the sign-test. In the presence

of censoring we mcdify t,e sigri-ir.tcrval to tie so called quantiLe-intervai

whose endpoints are the quantiles of the product-limit estimator of Kaplan and

Meier (1953). After deriving the asymptotic properties of the quantile-

interval we show, for specified overall level a, three way- to select the
aF.

0.p 4,-



confidence coefficients for the one-sample quantile intervals. For

a = 0.05 and equal confidence coefficients for both samples, the one-sample

confidence coefficients are in the neighborhood of .85 under the proportional

hazard model. The procedures are then applied to data from a colorectal

cancer clinical trial to compare four treatments.
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Section 1. Introduction

Nonparametric two-sample tests based on ranks, e.g. median and Wilcoxon

tests, have been extended by Gehan'(1965) Efron'(1967), and Brookmeyer and

Crowley'(1982b) among others to accommodate censored survival data. While

there is a vast literature on general linear rank test procedures with

censored observations, two-sample confidence intervals have received much less

attention. Nonparametric confidence intervals for the ratio of two scale

parameters were derived for randomly right censored data by Wei and Gail

(1983) based on the idea of Hodges and Lehmann(19f3). Their method can also

be applied to obtain confidence intervals for the difference of two location

parameters. The confidence sets were computed by a numerical method based on

a grid search and may not yield an interval. In this paper~we shall-focus on

the problem of testing and confidence intervals for the difference of two

population medians with randomly right censored data. Inferences for other

two-sample location and scale parameters will be discussed briefly in section

Following the idea of Hettmansperger (1984a), we shall show how to

construct a two-sample test and confidence interval based on one-sample
4

confidence intervals for the median of each population. Let [Lx, Ux] and

-Ly, U ] denote one-sample confidence intervals for the population medians 8

.0and 9 with confidence coefficients Y and Yy, respectively. A confidence* y x y

interval for A 8 - 8x, the difference of the population medians, can be. y

obtained as [L - U U - L ] with coefficient I - a. The overall
y x y x

coefficient 1 - a obviously depends on the respective one-sample

coefficients ' and Y . Bonferoni's inequality can be applied to obtain a
x y

boiind on the desired overall level but it is usually too conservative. Using

Snc-v'ipic 3I7n-intervals and their asymptotic distributions, Hettmansperger

- s i f ein1 Y for a -p-Lt'ed ot. For ixa uple; if

x -1

6.



one chooses equal coefficients then Y = Y is about .84 for a .05.x y

Further, the size a two-sample test of H0: A = 0 vs. H A s 0 rejects H0

when the one-sample intervals are disjoint.

In the presence of censoring, the sign-intervals need to be modified. To

motivate the construction of a sign-interval with censored data let us first

consider the situation when there is no censoring. Let X ) ... X be
(m)

an ordered sample from a continuous distribution with unique median x . ThePx

sign-interval is LLx, U x] = [X(d) , X(m-d+1)] with confidence coefficient

Y x = 1-2 p(S < d), where S has a binomial distribution with parameters

m and .5 and d is called the depth of the sign-interval. Given any

distribution function F(t), define its left continuous inverse to be

F (p) = infit: F(t) p) for O=pV1 (1.1)

,One then notices that X(d ) =F (d/m) and X (md+l): F ((m-dl)/m), where

F i(.) s the empirical distribution function. In the presence of censoring,
m

the nonparametric counterpart of Fm(.) is the product-limit estimator
m

(PLE) Fm(.) proposed by Kaplan and Meier (1958). It is now clear that, for a

specified depth d, one can use

F -( -I
Sx, U] = IF m (d/m), Fm ((m-d+l)/m)] (1.2)

as a confidence interval for the median. The confidence coefficient Y will
x

.* no longer be available from a binomial table and will have to be approximated

from a normal table due to the censoring scheme. It should be mentioned here

that the confidence interval (1.2) is different from the confidence region R

* based on the sign test in Brookmeyer and Crowley (1982a). For this rreason and

1('.2 is obtained from estimates of the quantiles of the true

-2-
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distribution function, hereafter we shall refer to (1.2) as the quantile-

interval with depth d. The confidence region R need not be an interval so

they suggested the use of only the interval part of the region and denoted it

by Ia. This truncation of the confidence region to an interval complicates

the issue of establishing two-sample inference procedures based on one-sample

procedures. We therefore consider the quantile-intervals, and we examine the

effect of censoring by comparing our results to the uncensored case studied by

Hettmansperger (1984a). One-sample confidence intcrvals for the median which

are based on the bootstrap method were derived by Reid (1981).

Let [Ly, U ] be the quantile-interval constructed as in (1.2) for an
y'

independent y sample with confidence coefficient Y . The selection
y

of Y andY for a specified a is given in section 3 after deriving thex y

asymptotic distributions of the relevant statistics. Three different ways to

specify Y and Y are given. Under the proportional hazards model some values
x y

of Y and Y are tabulated in section 4. In particular, for a = 0.05 and equalx y

coefficients (Yx = Y ), the coefficients Y and Y are in the range of .83 to
x y x y

.88 even for heavy censoring and for many pairs of sample sizes. Our

asymptotic results are facilitated by i.i.d. representations of the product-

limit estimator and its quantile process due to Lo and Singh (1986). Their

results are summarized in section 2. In section 5 we apply the procedures to

data from a phase III colorectal cancer clinical trial.

It was shown in Hettmansperger (1984a) that the tests based on sign-

intervals have the same efficiency as Moods' (1950) median test. In the

presence of censoring, Moods' median test has been extended in several ways by

Prentice (1978) and Brookmeyer and Crowley (1982). Gastwirth and Wang (1987)

exterid the control percentile test which is also a median type test when the

* pecifled percentile is the median. All these tests turn out to have the same

Pitman efficiency as our test.

-3-



Section 2. Preliminaries

Let us first introduce the two-sample location problem with randomly

0 00 0 0 0
right censored data. Let X , X' ... X and Y 2 "''' n

1' 2' m 1 Y 2, n.,bew

independent random samples from continuous life distribution functions

F 0°(t) = L(t - x ) and G°(t) = L(t - 0 ), respectively, where L(.) is a,x Y

continuous distribution function with unique median zero. Hence,

G0 (t) F (t - A), where A y- x . Let C1, C 2 ... Cm and D1 , D2 .... Dn

denote two independent random samples from arbitrary censoring distribution

functions H(.) and K(.), respectively. In the random right censoring model,

one observes (X i, ), i = 1, .. m and {(Yj, 6 ), j = I, .. n}, where

m (X, C.X) A C. = I(X = X0), Yj = min(Y° , D) =Yo A D.,

5. = I(Y. = y0) and I(-) is the indicator function. The censoring times will

be assumed to be independent of the corresponding lifetimes, and hence the

- -0
survival functions of and Yj are F(t) = F (t) H(t) and G(t) = G (t) K(t)

respectively, where for any distribution function W(.), its survival function

is W(t) = 1 - W(t).

Denote the Kaplan-Meier (1958) product-limit estimators (PLE) of F° and

0 0 0
30 by F m and G n. With proper choice of dx and dy to be discussed later, the

quantile-intervals for 0 and e with confidence levels Y and Y respectivelyx y x y

are,

[L U ] [ F o -1(di/m), F o -1((m- d + 1)/m)] (2.1)

x9 x J m m x

• and

9L, U ] [Go 1(d /n), ( ((n - d 1)/n)] , (2.2)
j y n y n y

00
where the inver.':e function F is defined Ln (1.1). For specified t, called

""
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the overall error rate, we shall show in the next section how to pick the two

quantile-intervals so that:

(a) The level a test for H A = 0 versus HA: A * 0
0 A

rejects H0 whenever the quantile-intervals are disjoint.

(b) The (1-a) confidence interval for A is

[L - U x , U - L ]. (2.3)"y y x

The choices of Y and Y (or equivalently of dx and d ) which are given
x y x y

Iv in the next section, are based on the normal approximations of the endpoints

of the quantile-intervals. We shall now introduce the background of such

approximations which are based on i.i.d. representations of the PLE F0 and its
ZVI. m

quantile function F (.) due to Lo and Singh (1986).
m

Let FI (t ) = P(X1 < t, CI = 1) and G1 (t) = PY Y t, 6 I = 1) be the

subdistribution functions for the uncensored observations. For positive reals

x, t and for c taking values zero or one, let

I

I~<t-fl x~td F1 s

S (x,-,t) F F(t) I(xt,=1) -xAt (2.4)F(x) Jo [F(s)] 27(24

Similarly, one can define n(y, 6, t) using instead Go, G and G I in (2.4). The

following proposition is an extension of Theorem 1 of Lo and Singh (1986). A

proof can be found in Lo, Mack and Wang (1986).

,~V..
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Proposition 1. For any T such that F(T) < 1, we have

Fo(t) - FO(t) = 1 Z &(Xi' Ei t) + R (t)
m m 1  m

C M (t) + R (t)

where sup IR (t)I = O(Zn m/m) a.s. and in denotes the natural logarithm.

0~t T

Remarks. 1. The (Xi, Ei, tWs are i.i.d. with mean 0 and variance

-t dF1 (s)

[ F(s)]

1/2 -
2. The process m m(t) converges weakly to a mean zero Gaussian

process Z(t) which has continuous paths with probability one on D[0TI.

The next proposition is a slight variant of the quantile representation

in Theorem 2 of Lo and Singh (1986) which is an extensiot,, in the presence of

censoring, of Bahadur's representation for the sample quantiles (Serfling

1980, o. 91). The current variant is similar to Ghosh's extension of

Banadur's representation (Serfling 1980, p. 92) as we are concerned

'-'."11/2
wi-ni n - asymptotics, and the proof can be obtained along the same lines.

00
Proposition 2. For any 0 < p < 1, if the derivative f°(t) of F°(t) is

continuous and positive at t -F (p), we have

0

:, :. , 0-1
% o I_ - m (Xil Eip (P))

F0  0 ~- - 1 m~. 12
F (P) - (p) - E 0 + P(m

',.",m if1 (F (p))

.-- m F9 -1 f(FO-1 + J (1/2,

C F (p))/f(F 1(p)) P ,n

-6-
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Similar results can be obtained for the y-sample and we will denote the

mean process by nn (t).

Section 3. Asymptotic Behavior of Two-sample Tests and Confidence Intervals.

Consider the two-sample location model in Section 2. In this section we

shall assume that the distribution L is continuously differentiable near zero

with densitv 2,(0) > 0. The asymptotic results in section 2 of Hettmansperger

(1984a) will be extended to the censored data case.

Theorem 1. Let Zx be a positive constant and

1/2
d = m/2 0.5 - Z m /2 . 3.1)
x x

Then

o 1/2-112

L - - d /m)= - Z/[2m 2  ()] - max )/Z(O) + O (m )x x x X P

(3.2)
o- 1/2 -1/2

] U F V - + 1)/m) 9 + Z /[2m Z(O)] m(a )/( ) + a (m )/
X M x x x m x P

Proof. By proposi t ion 2,

id/n F (m oi1/2
/m) (d /m))/Z(Fo  (dP/m) -x

) 
+ Op(m )

' O *_i/(2m) - Z /(2m )]/Z(0) (F (dx/m,) - (am()]/i()- x

-1 (o -1 -1/2
"1 ,/Z(D, 11/Z(O, -I/Z(F (d /m) - )] (F (d /m)) + Op(mx x x m x P

1 /2 -. '-e na meain C for alL t and tne process Mrn (t), O<t<T} convergeF

* a,,,y ta continuous path .auasian proces.4, it foLlows that

-7-

P0,%"



I

(di))- (e)= oj(
-1/2/

Also CM (F -1 dx /m)) = O(m - ) and Z(.) is continuous at zero implies that

the second to last term is also o p(m- /2). We have thus proved Lx in (3.2)
bP

and Ly is similar. Ii|y

_Remark. The remainder op(m ) in (3.2) and (3.3) can be replaced by

o(m I/2 ) a.s. with a modified proof or an even better rate (say O((Un m/m)3 / 4)

a.s.) if we further assume that the second derivative of L exists. While all

the asymptotic resulbs on convergence in probability in this section can be

generalized to conver,g~nce a.s., we shall not attempt to do so as the current

forms suffice for our purpose.

Statements similar to Theorem 1 apply to Ly and Uy as well with

corresponding Z, and d LetI Y

T= f [F(s)] - dF (s) (3.3)
4- x 0

then Var(' (a = -1 /(4m) The central limit theorem applied to m(6x) then
m x x mx

gi yes :

Coro'lary. As m -.

i.1

1 /2i) m (L - 0 ) converges weakly to a Normal distribution with

2
- mean - Z /1[2 C.(0)] and variance T x/[2 Z(0)]

112(
x - x

rn1 "(U L ) converges in probability to Z /Z(0)

4- -3-
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(iii) P(e < Lx) converges to (-Z x/(T) 1/2) where P is the standard

normal distribution function.

The approximate confidence coefficient for [Lx, Ux ] is thus

Y -- = - 2(D(-Z x/(T ) . (3.4)

xx'

S€.

It should be noted that T = 1 in the uncensored case.
.. *X

The statements in the Corollary also applies to Ly and Uy with
@ -2

T = foy [(s)] dG (s).

1 et N = n 4 m, and assume that m/N tends to A, O<X<I, as m and n tend to

. infinity. The following theorem relates CL, the overall error rate, to Zx and

. 2, which determine Y and f

9"-'S"

(-A) I1/2 Z + 1/2 Z

Theorem 2. P(Uy Lx < A) + P(Ly - > A) - 2 [(1-) tx+ A Y )

[OX [x +XyI

Proof. By tne orollary, N (Uy - e ) - N (L - ) converges weakly to ay. y x x

normal distribution with mean Z /[2Z(O)(1-X) 1 2 ] + Z /[2(O) A 1 and'.. y x
-e1/2 2 1/2 2variance T /[2V(O) '1-A) ] + z /E2Z(O)A ]2  Hence

P23 - L < A)y x
"1

• X 1 2 Z + (1-X)1 2 Z
PA " (N/ N N/(L - 0 ) 0) @ , Y X

Y...x. y x

"i'niar'y, P" - U X> A) converges to the same limit.

4 efine Z by a :2(-Z ) and let Zx f Zy satisfy

~-9-

..
6
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(I-A) 112 Z /+ 12 Z( = Z [(I-A) - + A T" ]1/2 (3.5).,,xy a x y

Then for depths d,, d,, given by (3.1), we have

P(L - U < A < U - L ) 1-a
.,. ~y X y X

and under H0: A = 0, P(L x > U ) + P(Ly > Ux ) X a. Hence [Ly - U U - L x ]

is a confidence interval for A with approximate confidence coefficient (1-a),

and the test which rejects H0 whenever 0 is not in the confidence interval, or

equivalently whenever the two quantile-intervals are disjoint, has approximate

size a.

The condition (3.5) provides an infinite number of choices for Zx and Zy.

The following Theorem shows tha. the asymptotic length of any of the two-

• sample confidence intervals does not depend on Z. and Zy.

Theorem 3. Let A denote the length of the two-sample confidence interval.

1/2 1/2 12
Then N A Z (1-A)T x + AT ]1 ([((-A)]/2(O)} in probability.

Pro.1/2 1/2 1/2
Proof. N A =N (U -L ) N (U -L)

y y x x

- z .'[(i-X)/2 (O)- Z /[XA12 i(O)]
* y x

by Corollary (ii). The theorem now follows from (3.5).

4%

We now consider three ways to specify Zx and Zy.

-10-
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1I. Quantile-intervals with equal confidence coefficients:

1/2 1/2N, If we choose Y Y, then Z /r = Z /r /  The condition (3.5) thenx y x x y y

implies

" 1/2 )1/2 1/2 1/2T.- E (l-X)T X+ I~ T (nT + mr)I/

x x y y (1 x [(lX) 11/2 12 cI a (n-x1/2 + )1/2 ci

1/2 1/2 (3.6)

-( 1/2 -r (nr + mr ),z / /r ) Z x I 2
y y x x (n 12 ( 1) I/2 U

2. Quantile-intervals with equal asymptotic lengths:

-1/2 -1/2In this case, m Zx  n Z Combining this with condition
x y

(3.5), we have

z.[(1-x)-r + XT I/2 (n + m )12

z,.' x 1 2 1 / 2 m a t1 2O
E. [m(1-A)] + (nA) 2n

1/2 + (nTr + mrT )1/2

Z = (n/m) 12 X Z (3.7).y x 2 m /2

3. Quantile intervals with equal depths:

p. In this case d x = dy, and (3.1) implies m - n m1/2 z - n /2 z

Condition (3.5) now gives

Xl/ 112 1/2 1/2 (m

r~-k ' ]I2n Z + A (r-n)

" X y c
SX [= 1 12 1/2

,.N-.



1/2 1/2 1/2
(nT + mT ) n Z + m (m-n)

X y
n+m

1 2 -12 (nT + mT 1/2 1/2 (m-n)n /2

Z = (m/n) Z - (m-n)n-/ x[y x n+m

(3.8)

Remarks. 1. When the sample sizes are equal, (3.8) reduce to (3.7) and in

both cases ZX = Zy = Z (T + T ) /2/2. However, unlike the uncensored case

y'.(where T x= T = 1), (3.6) does not reduce to (3.7).

'I1/2

2. Under Tx = T , the Z in (3.6) and (3.7) equals T times the Z for the

1/2
corresponding uncensored case, but in (3.4) the Tx cancels and the

confidence coefficients Y and Y remain the same as the uncensored
x y

case. Neither Zx, Zy nor Yx' Yy produced by (3.8) remains the same as

the uncensored case. If in addition m = n, all three solutions reduce

to Z = Z = Z T 1/22. Note that if the censoring schemes are different
x y x x

for tne two samples, in general Tx X *T even under H A = 0.

3. It should be noted here, as implied by Theorem 1 and (3.5), that the

implementation of the confidence interval and test for A rely only

on -T and -T and not on the density at the median. Hence our procedures

avoid estimating the density at the median which is required by

Brookmeyer and Crowley (1982ab) and Wei and Gail (1983). All procedures

essentially require the consistent estimation of -T and Ty. In practice
x y

this can be done in several ways, for example,

-72-
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md.

= x Z N(XE)[N(X ) + d] '(39)~x .i xm
<. xi

where m = F°  (1/2) is the x-sample median, d i is the number of
x  m

observed deaths at X i and N(X.) = E I(X. > X.) is the number of
1'"j= .:i 1

observed survival times larger than Xi. The estimator Tx is similar to

formula (2) of Brookmeyer & Crowley (1982a). See also (5.2) of

Brookmeyer and Crowley (1982b) for an alternative estimate.

4. Mood's median test was shown to be a special case produced by sign-

intervals in Hettmansperger (1984a). With censoring, the median test

statistics can no longer be expressed in terms of the differences of

order statistics as in formula (6) there. It is not clear whether the

median test by either Prentice (1978) or Brookmeyer and Crowley (1982b)

can be produced by our quantile-intervals.

Section 4. Tables for confidence coefficients and a recommendation

Confidence coefficients Y and Y corresponding to a two-sample test ofConidececoefiiens x an y

H L = 0 versus HA: A * 0 at level a = .05 will be provided in this section
0 A

for the three intervals described in the previous section. Due to censoring,

the confidence coefficients Y and Y depend on the value of T and T so we

x y x y

shall only consider a special case, the proportional hazards model, where x

=-o )r, -(t -o)3,te
and T can be evaluated easily. Let H(t) [F(t)]r K(t) = [G°(t)]5  then

y

- Tx = (2
r l - 1)/(r + 1) and tx - probability of x-censoring r/(r + 1).

s+1
Similarly, T = (2 - 1)/(s + 1) and it = probability of y-censoring =

y y
/ s/( 1 ). We shall consider r, s = 1/3, 1, 3, which correspond to 25%, 50%

* ang 75% censoring.

-13-
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(Tablesl-3 here)

- Note that T = T when r = s, then (3.6) and (3.7) give the same Y and Y asSx y x y

in the uncensored case. Hence, the first two columns which corresponds to r =

F in Tables 1 and 2 should be the same as those columns corresponding to

equal-coefficient and equal - length case in Table 1 of Hettmansperger

(1984a). The discrepancy is due to computational accuracy. In the equal

depth case (Table 3), (3.8) depends not only on the ratio of sample sizes but

also the values of m. We chose m = 90 so that the corresponding n is an

integer. Our computation shows that the pair of coefficients are very high

(over .95 for m/n 1.5 and close to 1 for m/n 2) for unequal sample

sizes. Therefore we only provide the results for ratio of sample sizes (m/n)

that are 1 and 1.5 in Table 3.

As can be seen from the tables, the confidence coefficients in Table 1

appear to be quite stable (between .83 and .88) for various ratio of sample

sizes and degrees of censoring compared to those in Tables 2 and 3. For this

reason the equal coefficients solution (3.6) seems preferable to the others

and we recommend its use in applications. In an unpublished paper of Tableman

and Hettmansperger (1988) the equal lengths case may be preferable in some
.

uncensored cases based on Bahadur efficiency. In the censored case, the equal

lengths solution (3.7) may be preferable to the equal coefficients solution

(3.6) since one only needs to !stimate T + T when m n or
x y

".I-A)T + AT in general, while in (3.6) one has to estimate, in addition,
x y

T and T separately. The choices of Z and Z (or equivalently Y and Yx y x y x y

for (3.8) are not recommended since they are more complicated than (3.7) even

when = T and they require much higher coefficients (see Table 3) for

inbalanced sample sizes compared to those coefficients provided in Tables 1

and 2.

%.
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Section 5. An Example

We shall apply the two-sample procedure in section 3 to data from a Phase

III colorectal cancer clinical trial (Ansfield and Klotz 1977). The data

analyzed were an updated version reported in the Central Oncology Group Final

Report (COG 7030), Spring 1977. These data were also analyzed by Brookmeyer

and Crowley (1982a) to compare confidence intervals for the median survival

times of four dosage regimens 5-fluorouracil. Refer to Brookmeyer and Crowley

(1982a) for a description of the data. A summarization of the data is given

in Table 4 together with 95% confidence intervals. The median survival time

(weeks) and the quantile-intervals are computed by a continuous version of the

Kaplan-'.eier estimator, denoted by Fn, discussed in Remark 1 of section 6 and

is therefore slightly different from the median in Table 7 of their paper.

(Table 4 here)

1/2
For Y .95 the Z in (3.4) is equal to 1.96 times (T 1 where T is

x - X

estimated by T in (3.9). The depth dx in Table 4 is then obtained from%,' X

(3.1) which for treatment 1 is 19.09. The quantile-interval EL , U ) is

-* -I * -1 *
-. obtained by L = F (d /m) and U = F ((m - d + 1)/m), where F is the

x m x x m x m

linear interpolated Kaplan-Meier estimate as discussed in Remark 1 of section

6. A table for the survival estimate S = 1 - is available for treatment 1
0 m

in Table 8 of Brookmeyer and Crowley (1982a). Our estimate F (which is not
im

included here) coincides with theirs.

To make pairwise comparisons at the 5 per cent significance level we need

- 'he confidence coefficients Y and Y and the depth values d and dy. Table 5
x y X

gives tne results for the three different methods to specify Zx and Z (cf.

",.,.ur:,_ j.6u t.; ( .8} .

.t0-4



(Table 5 here)

It turned out that none of the one-sample quantile intervals in Table 5

are disjoint hence all three methods fail to detect a significant difference

within any of the six pairs. Brookmeyer and Crowley (1982b, section 6)

applied the k-sample (k=4) median test to this data set and also founa no

significant differences among the four treatments. Our conclusion is

,, therefore in agreement with theirs. It is worth noting here that the

quantile-intervals with equal asymptotic lengths actually yield intervals with

quite iifferent lengths. This suggests that higher order accuracy is needed

for the asymptotic length than that given in Corollary (ii) of section 3. In

__ our current example the sample sizes (and T x ) for each treatment are fairly

-p even, hence the quantile-intervals produced by all three methods ((3.6) to

(3.8)) are comparable.

Section 6. Discussion and generalization

1. The quantile-intervals that are defined in (2.1) and (2.2) are based

on the PLEs F and G which are step functions. Since the distribution

functions F and G are assumed to be continuous it may be preferable to use a

continuous version (for example, linear interpolation) of the PLE. Let F and
*L m

Gm denote such a version by connecting the jump points (c.f. Figure 1 of

Brookmeyer and Crowley (1982b)). It follows from the appendix of Gastwirth

and Wang (1988) that

Sup IF*(t) - F°(t)l = O(m- ) a.s. (6.1)
o t<T  m

and

-16-
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Sup IF -(p) - F* (p) = o ( 1 2  ) a.s. , (6.2)
O< " m m

-., (p)pp° p

for any o<p <1 . In practice, one may use the smoothed quantile-interval

r * 0
LL x U x] by replacing F by F in (2.1). It is immediate from (6.2) that all

the asymptotic results in section 3 apply to the smoothed quantile-intervals

LL
x , 

].

2. Theorem 3 shows that all the intervals have the same asymptotic

length and NI /2 A /(2 Z ) converges in probability to

+ X ] /2/[4X(1-X)2 (0)]I/2 which is the reciprocal of the Pitman[( -) x y

efficacy (c.f. Hettmansperger (1984b)) of the control median test by Gastwirth

and Wang (1988). It can be checked easily that both median tests by

* Brookmeyer and Crowley (1982b) and Prentice (1987) have the same efficacy as

the control median test. Hence all four median type tests have the same

' efficiency.

3. The two-sample inference method based on quantile-intervals was

developed only under the location model. For the Behrens-Fisher problem where

we test whether both populations have the same median but may differ in shape,

the significance level

f0 ()Z 1/2 o 1/2fo(9 )zy x + g (a )Z (1-X)
x y y x

[ATy f°(Ox )2 + (1-A)T x[g
0 ey )]2 1/ 2

00

Then one must estimate, in addition to T and Ty, the ratio f°(6 )/g°(6y)
x yx y

0 0 0 owhere fo and g are the densities of F and G , respectively. The estimation

of fo ( )/gO(C ) can be accomplished by density estimation procedures in the
x y

censored case (Lo, Mack and Wang (1986), Padgett and McNichols (1984)) which

usually require very large sample sizes. Hence, the procedure in this paper

can be used for the Behrens-Fisher problem as in Hettmansperger (1973).

-17-
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4. We demonstrated in this paper how to conduct two-sample inference

methods based on one-sample procedures. Although this is done for the

quantile-intervals (or sign-tests) under the location model it can be applied

to other nonparametric procedures (e.g. linear rank tests) and models (e.g.

scale model or stochastically ordered alternative). The crucial step lies in

the asymptotic distribution of the endpoints of the one-sample confidence

intervals (cf. Corollary in section 2).
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Table 1. Equal Confidence Coefficients to Produce a Size .05

Two-sided Two-Sample Test (Y = Y )

...

m/n (ty)

iT. I y (.25,.5) (.25,•75) (.5,.25) (.5,.75) (.75,.25) (.75,.5)

1 .834 .835 .851 .835 .844 .851 .844

1.5 .836 .84 .862 .834 .854 .842 .837

2 .840 .846 .870 .836 .862 .837 .835

2.5 .844 .851 .876 .839 .868 .835 .843

3 .849 .855 .881 .843 .873 .834 .835

%-..

%°-

Table 2. Confidence Coefficients Corresponding to Equal Lengths

N
o

. *'

(Or IT

m/n iT - (.25,.5) (.25,.75) (.5,.25) (.5,.75) (.75,.25) (.75,.5)
* x y

. Y Y Y Y Y Y Y Y Y Y Y Y Y Y
x y x y x y x y x y x y x y

1 .834 .834 .864 .806 .958 :737 .806 .864 .933 .754 .737 .958 .754 .933

1.5 .879 .794 .909 .771 .983 .717 .848 .821 .967 .930 .763 .920 .785 .890

2 .910 .770 .938 .750 .993 .707 .880 .793 .984 .717 .786 .889 .811 .858

2.5 .933 .754 .958 .737 .997 .701 .905 .774 .992 .709 .806 .864 .834 .834

3 .950 .742 .971 .727 .999 .696 .924 .76 .996 .703 .826 .844 .854 .815

-9-
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Table 3. Confidence Coefficients with Equal Depth (dx = d )

(qxr1) m=n=90 m=90, n=60

" 'Y Y Y
x y x y

(.25,.25) .834 .834 .997 .997

(.25,.5 ) .864 .806 .998 .993

(.25,•75) .958 .737 .999 .963

(.5 .25) .806 .864 .993 .998

(.5 .5 ) .834 .834 .995 .995

(.5 .75) .933 .754 .999 .966

(.75,•25) .737 .958 .946 .999

(.75,.5 ) .754 .933 .951 .998

(.75,•75) .834 .834 .973 .979

Table 4. Summary Statistics and 95% Confidence Intervals for Four Treatments
A,.

Treatment 1 2 3 4

Sample size 53 56 58 52

Censored proportion 16/53 8/56 14/58 7/52

Median survival time (weeks) 59.18 39.53 43.23 28.52

Estimated T 1.109 1.152 1.23 90
x

Depth dx  19.09 20.05 20.33 20.15

* 95% quantile-interval [L U) [37.4,72.5) [28.6,52.3) [25.9,61.4) [24.3,45.0)
. X

95% confidence interval '38,73) [31,51) [28,60) [25,46)

by Brookmeyer and Crowley

-20-
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Table 5. Two-Sample Procedures for all Six Pairwise Comparisons, a = 0.05

Equal coefficients Equal lengths Equal depths

Treatment 1 & 2

yX y x .834 .834 .832 .836 .780 .878

a d 21.69 22.93 21.71 22.91 22.29 22.29

EL, U x ) [39.6, 64.7) [39.6, 64.6) [40.3, 63.3)

ELy Uy) 34.8, 48.2) E34.8, 48.3) E34.2, 49.4)

Treatment 1 & 3

Y Iy .834 .834 .835 .833 .746 .897

d d 21.69 23.65 21.67 23.67 22.62 22.62

EL U x ) [39.6, 64.7) [39.6, 64.8) [41.1, 62.6)

[Ly U y) [35.5, 51.6) [35.5, 51.6) [32.0, 58.2)

Treatment I & 4

. " . .335 .835 .814 .855 .832 .838

• d d 21.68 21.76 21.92 21.52 21.72 21.72

L i X )  [39.6, 64.7) [39.8, 64.0) [39.6, 64.6)

FL U ) [24.7, 42.0) [24.6, 42.4) [24.7, 42.1)
y yTreatment 2 & 3

X y .834 •834 .831 .837 .859 .806

" X d 23.65 22.93 23.69 22.89 23.29 23.29.,-.x j
"-L " *J ) [34.8, 48.2) [34.8, 48.3) [35.1, 47.6)

I. , ) [35.5, 51.6) [35.5, 51.5) [35.1 52.2)- y' y '3 .1 52.2

Treatment 2 &

.835 .835 .816 .853 .876 .778%,...X y
d 21.76 22.93 21.54 23.16 22.32 22.32

*" - 'L [34.8, 48.3) [35.0, 47.8) [34.2, 49.3)

LL , U ) [24.7, 42.0) [24.6, 42.4) [24.8, 40.3)

Treatment 3 & 4

de . .835 .835 .813 .856 .895 .74C

Sd X d y 23.64 21.76 3.393 21.50 22.65 22.65
, L , U ) 135.5, 51.6) [35.7, 51.1) [32.2, 58.2)

"o X X

L ) [24.7, 42.0) [24.6, 42.5) [24.9, 38.9)
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Block 20 (Abstract Continued):

of these two-sample tests are the same as that of the median test proposed
by Brookmeyer and Crowley (1982b). The procedures can also be used for the
Behrens-Fisher problem.

' Nonparametric two-sample inference procedures are useful in comparing
the responses of treatment and control groups. In medical follow up

studies the data are usually subjected to censoring. While many of the

two-sample procedures have been extended to accommodate censored data we
show, in this paper, how to construct two-sample tests and confidence
intervals based on one-sample confidence intervals. This method was first
discussed in Hettmansperger (1984a) for uncensored data where a confidence
interval for the difference in population medians is constructed by sub-
tracting the endpoints of one (one-sample) interval from the opposite
endpoints of the other. The test then rejects the null hypothesis of
equal medians if the one-sample intervals are disjoint. Hettmansperger
used the sign-interval as the one-sample interval which is obtained by

inverting the sign-test. In the presence of censoring we modify the sign-
interval to the so called quantile-interval whose endpoints are the
quantiles of the product-limit estimator of Kaplan and Meier (1958).
After deriving the asymptotic properties of the quantile-interval we
show, for specified overall level a, three ways to select the confidence

coefficients for the one-sample quantile intervals. For a = 0.05 and
equal confidence coefficients for both samples, the one-sample confidence
coefficients are in the neighborhood of .85 under the proportional hazard
model. The procedures are then applied to data from a colorectal cancer
clinical trial to compare four treatments.
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